Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 25(8): 1643-51, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22799741

RESUMO

Metabolic profiling of macrophage metabolic response upon exposure to 4-hydroxynonenal (HNE) demonstrates that HNE does not simply inactivate superoxide-generating enzymes but also could be responsible for the impairment of downfield signaling pathways. Multianalyte microphysiometry (MAMP) was employed to simultaneously measure perturbations in extracellular acidification, lactate production, and oxygen consumption for the examination of aerobic and anaerobic pathways. Combining the activation of oxidative burst with phorbol myristate acetate (PMA) and the immunosuppression with HNE, the complex nature of HNE toxicity was determined to be concentration- and time-dependent. Further analysis was utilized to assess the temporal effect of HNE on reactive oxygen species (ROS) production and on protein kinase C (PKC). Increased levels of HNE with decreasing PKC activity suggest that PKC is a target for HNE adductation prior to oxidative burst. Additionally, localization of PKC to the cell membrane was prevented with the introduction of HNE, demonstrating a consequence of HNE adductation on NADPH activation. The impairment of ROS by HNE suggests that HNE has a greater role in foam cell formation and tissue damage than is already known. Although work has been performed to understand the effect of HNE's regulation of specific signaling pathways, details regarding its involvement in cellular metabolism as a whole are generally unknown. This study examines the impact of HNE on macrophage oxidative burst and identifies PKC as a key protein for HNE suppression and eventual metabolic response.


Assuntos
Aldeídos/metabolismo , Aldeídos/química , Aldeídos/toxicidade , Animais , Linhagem Celular , Técnicas Eletroquímicas , Eletrodos , Luminol/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , NADP/química , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
2.
Biosens Bioelectron ; 33(1): 128-33, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22257735

RESUMO

The miniaturization of electrochemical sensors allows for the minimally invasive and cost effective examination of cellular responses at a high efficacy rate. In this work, an ink-jet printed superoxide dismutase electrode was designed, characterized, and utilized as a novel microfluidic device to examine the metabolic response of a 2D layer of macrophage cells. Since superoxide production is one of the first indicators of oxidative burst, macrophage cells were exposed within the microfluidic device to phorbol myristate acetate (PMA), a known promoter of oxidative burst, and the production of superoxide was measured. A 46 ± 19% increase in current was measured over a 30 min time period demonstrating successful detection of sustained macrophage oxidative burst, which corresponds to an increase in the superoxide production rate by 9 ± 3 attomoles/cell/s. Linear sweep voltammetry was utilized to show the selectivity of this sensor for superoxide over hydrogen peroxide. This novel controllable microfluidic system can be used to study the impact of multiple effectors from a large number of bacteria or other invaders along a 2D layer of macrophages, providing an in vitro platform for improved electrochemical studies of metabolic responses.


Assuntos
Técnicas Biossensoriais/métodos , Macrófagos/metabolismo , Técnicas Analíticas Microfluídicas , Explosão Respiratória , Superóxido Dismutase/química , Animais , Calibragem , Células Cultivadas , Técnicas Eletroquímicas , Eletrodos , Camundongos , Reprodutibilidade dos Testes , Acetato de Tetradecanoilforbol/farmacologia
3.
J Biol Inorg Chem ; 11(7): 917-29, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16868743

RESUMO

The most common and deadly form of the malaria parasite, Plasmodium falciparum, is responsible for 1.5-2.7 million deaths and 300-500 million acute illnesses annually [Bremen in J. Trop. Med. Hyg. 64:1-11 (2001); World Health Organization (2002)]. Hemozoin, the biomineral formed to detoxify the free heme produced during parasitic hemoglobin catabolism, has long been suspected of contributing to the pathological immunodeficiencies that occur during malarial infection. While there is a growing consensus in the literature that native hemozoin maintains immunosuppressive activity, there is considerable controversy over the reactivity of the synthetic form, beta-hematin (BH). Given the emerging importance of hemozoin in modulating a host immune response to malarial infection, a careful examination of the effects of the constitutive components of the malaria pigment on macrophage response has been made in order to clarify the understanding of this process. Herein, we present evidence that BH alone is unable to inhibit stimulation of NADPH oxidase and inducible nitric oxide synthase, the key enzymes involved in oxidative burst, and is sensitive to the microbicidal agents of these enzymes both in vitro and in vivo. Further, by systematically examining each of the malaria pigment's components, we were able to dissect their impact on the immune reactivity of a macrophage model cell line. Reactions between BH and red blood cell (RBC) ghosts effectively reconstituted the observed immunomodulatory reactivity of native hemozoin. Together, these results suggest that the interaction between hemozoin and the RBC lipids results in the generation of toxic products and that these products are responsible for disrupting macrophage function in vivo.


Assuntos
Hemeproteínas/imunologia , Hemeproteínas/farmacologia , Imunossupressores/metabolismo , Macrófagos/metabolismo , Malária/imunologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Hemeproteínas/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Imunossupressores/química , Imunossupressores/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Microscopia Confocal , Estrutura Molecular , NADPH Oxidases/efeitos dos fármacos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...